DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

Datal ime Processing Framework
Project Requirements, Phase 1. Core Framework

Home | Users | Programmers | Project Developers | SourceForge Project Page | Resources

i. Contents

[. Problem

II. Background
III. System Environment

IV. Functional Requirements

V. Non-functional Requirements

VI. References
VII. Glossary

|. Problem

The DataTime Processing Framework (DTPF) is a C++ framework facilitating the creation of
time-based data processing systems. While applicable to a wide range of systems (audio/visual
processing, sensory data acquisition, digital control systems, etc.), the immediate intent is to support
the creation of computational models of sensory processing. For example, models of audio-visual
sensory integration in developing human infants. Such models tend to be modular, and studies
involving them typically examine a set of similar models with variations or extensions to a basic form,
deal with large data rates (e.g., audio/visual data) and use computationally expensive algorithms that
can benefit from hardware parallelization. DTPF has the primary goal of making it easier for various
programmers and researchers to create sensory models in a modular manner. The first phase will
involve implementing the core framework for off-line (as opposed to real-time) processing. This phase
will also not emphasize graphical user interface (GUI) aspects, though it will provide features for later
GUI integration.

Il. Background

Motivation

The initial purpose of this project is to provide a well-engineered foundation for creating
computational models of audio-visual sensory integration and attention in human infants. This
specifically includes Epigentic Sensory Models of Attention (ESMA) which are composed of distinct
components performing specific functions, and share a general ’pipe and filter’ structure with many
other computational models which operate on sensory data. As it is the nature of these models to be
highly modularized there is much potential for reuse of common modules in different experiments and
models. Modularization and reuse also directly facilitates the style in which the models are used as
studies involving them typically examine a set of similar models with variations or extensions to a
basic form. These models also work with high rates of data, performing more complex processing than
traditional multimedia applications (e.g., audio-visual mutual information calculation, Hershey &
Movellan, 2000). Even for non real-time situations, the computationally expensive algorithms used can
benefit from hardware parallelization. Although the focus here is on sensory models that can run
without real-time constraints, we are beginning to work with hardware devices as well (e.g., robotic
pan-tilt cameras, SoDiBot). Introducing soft real-time requirements (soft real-time applications such as
video players can tolerate some indeterminacy in timing, hard real-time systems such as aircraft control
in general do not have that luxury) further enhances the importance of being able to harness hardware
and software parallelism.

In previous work we have been developing customized software programs (e.g., SoundStream,
SenseStream; for applications of SenseStream see: Prince & Hollich, in press; Prince, et.al., 2004).

1of 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

While this can reduce the perceived initial amount of time and effort required to get a particular
program up and running, it leads to more difficulty in extending program functionality, maintenance
problems, lower code reusability and many other software engineering evils. In short, while the
“one-shot’ approach can be seen as providing short term gains, any real gains occur at the expense of
long term flexibility. Many of these issues were encountered in the development and modification of
SenseStream. SenseStream dealt with many of the same processing issues as SoundStream did, but due
to the way these programs were designed and implemented, code from the earlier SoundStream project
found no reuse in SenseStream. The customized nature of SenseStream has also made subsequent
modifications more difficult. One such addition to the SenseStream program was calculation of Mel
Frequency Cepstral Coefficients (MFCC) from audio data which involved modifications to the user
interface, configuration, audio processing and mutual information calculation program code. Another
modification that has proved more intrusive is the ongoing integration of the SoDiBot data acquisition.
This has involved circumventing the original audio and video input (which read data from a file), as
well as modification of SenseStream and the SoDiBot controlling software in order to communicate
data and perform synchronization.

These modifications to SenseStream could have been made considerably easier if a framework that
enabled and encouraged modularization and reuse had been used for the SenseStream program.
Development could have been more focused on the processing problems addressed rather than having
do deal with more mundane issues of configuration, data communication and synchronization. The
program code itself could have been more directly applicable to future projects such as the sensory
models mentioned above.

In addition to these software engineering issues, as our work has progressed we have begun
collaborating with a number of psychologists who use computers running Macintosh OSX almost
exclusively. While our group has some access to OSX computers there are a larger number of Solaris
and Linux computers available at our university. A solution supporting OSX while allowing for some
level of program code portability between different platforms is desirable. However, the focus of this
initial stage is on flexibility; portability is a secondary objective.

These factors motivate the creation of a more generalized framework for modular processing of
time-based data, capable of exploiting parallelism by concurrent execution of modules across multiple
processors and multiple computers, while allowing multiple operating system platforms to be
exploited. Such a framework, if well designed, could also be applied to the more traditional multimedia
domain or general problems involving processing of time-based data.

Stakeholders
The stakeholders involved with DTPF can roughly be categorized as follows:

1. End-users: The envisioned users of DTPF are psychologists or other researchers conducting
simulations and experiments with sensory models. The non-programmer’s interaction with DTPF
will of course be through end-user software. End-users are considered stakeholders here to the
extent that the framework must support applications which meet their needs.

2. Programmers: Programmers implementing model components or applications will interact with
the framework through its application programming interface (API) as well as end-user software.

3. Implementors: Framework developers (who could be considered application developers or
end-users as well) will be involved with implementing internals of the framework in addition to
making use of the API and end-user software.

The skills and knowledge of these stakeholders can vary considerably, from student programmers early
in their undergraduate careers to professional researchers with extensive to non-existent programming
background. Experience with different OS platforms and software packages can be expected to show
similar variation.

Risks

Several risk factors present themselves concerning the creation of the DTPF. Planning and
implementation of the first phase discussed here entails considerable effort, potentially on the order of
one person-year. Limiting the scope of this first phase and employing appropriate software engineering
principles could reduce the effort required. There is also the risk that the implemented DTPF will not
adequately meet our stakeholder’s needs: programmers might find it difficult to develop models using
the API provided; end-users might find the resulting end-user software too complicated or incomplete
for their purposes. This could be due, among other reasons, to missing, incomplete or incorrect
functionality that hinders the development of sensory models or end-user software with the DTPF.

20f 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

Considering these risks, the potential long-term benefits of creating the DTPF are still attractive.
Exposure to these risks can be reduced by keeping them in mind through the stages of planning and
implementation.

Existing Software

While this project intends to create a new framework, considering existing software is important.
Existent software can reveal successful design approaches and desirable functionality, as well as
drawbacks and potential pitfalls. We are also interested in software toolkits that may be useful in
creating the DTPF and facilitating future projects.

The BeOS MediaKit is a framework for real-time processing of audio and video data, paying
particular attention to the timing and delivery of the data. Processing in this system is based around
‘nodes’ which are modules of processing that can be producers of data, consumers of data, or both. The
MediaKit makes heavy use of threading, and is designed so that the nodes can be dynamically
connected at run-time. A server application allows client programs to make use of common system
nodes (audio input, audio mixing, video output, etc.), load plug-in nodes, and also make their nodes
available to other programs. The Cortex program was created as a graphical interface to the MediaKit
server application services and allows users to manipulate nodes and their connections. Be Inc. which
developed the BeOS and its MediaKit was unable to continue and sold its intellectual property to Palm
in late 2001. Since then, a team of open-source software developers have created a compatible
implementation of the MediaKit but this still has the limitation of being dependent on the BeOS
platform.

While the specific platform dependency precludes direct use of the MediaKit, the overall design
appears attractive for DTPF. The modular organization of processing into nodes that can be
dynamically connected allows reuse of a node’s functionality in many different settings. The focus on
threaded processing and asynchronous messaging allows greater utilization of hardware parallelism.
The client-server arrangement allows separate processes to makes use of nodes and other resources.
These higher level aspects of the MediaKit cover much of what we wish to achieve with DTPF.

The SoundStream software used a processing model similar to the node-based modular model of the
MediaKit, although without most of the flexibility and generality. While the audio-visual processing
system was successful for the SoundStream project, it was implemented without a formal design or
clear plans for enhancement to address its shortcomings, and has been disused. This software is
interesting in that the knowledge gained implementing it is directly applicable to DTPF in both concept
(both projects deal with similar data processing problems) and ability (both projects share common
developers). The name ’DataTime’ also originates with this software (DataTime 0). The DataTime 0
source is available here.

The Java Media Framework (JMF) is the Java language package for processing audio and video
data. The framework is specified through a series of interfaces for which a particular JMF distribution
will provide implementations. Processing is organized similar to many other media processing
frameworks, allowing pipe and filter connections and providing default components to handle tasks
such as playback. A plug-in API provides another mechanism for extensibility. As the JMF is a Java
language API, properly written programs using it can be expected to run on platforms where the JMF is
available. However the JMF is a Java API and we desire a solution more compatible with C++. While
performance of Java programs has improved, and subsets and extensions of Java for real-time purposes
exist, writing high performance code in Java is not as simple as it might be in C++. Approaches to
real-time programming in Java impose strict constraints on the language features and classes that can
be used (Wellings 2004; [ToDo: Need to add link/reference to a nice DrDobbs Journal article on
real-time Java, unfortunately the article can not be located at this time...]), resulting in a programming
model that is drastically different from traditional Java programming (in many approaches to real-time
Java the indeterminancy of garbage collection is avoided by strictly avoiding any dynamic allocation
during real-time operation with the result that the new operator and any method that uses it must be
avoided). Making use of hardware specific resources is also more difficult in Java. As an example,
accessing a device driver in Java would require implementing the desired operations in a C/C++ shared
library and providing a Java class with nati ve methods that call the implementation in the C/C++
shared library. With future application to robotics envisioned for DTPF, issues of performance and
flexible access to system services become even more important. While not directly used for DTPF, the
JMF is valuable as another perspective on the problems approached here.

30f 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

IKAROS is an ongoing research project, with the goal "to develop an open infrastructure for system
level modeling of the brain including databases of experimental data, computational models and
functional brain data. The system will make heavy use of the emerging standards for Internet based
information and will make all information accessible through an open web-based interface. In addition,
Ikaros can be used as a control architecture for robots." IKAROS web page). While the intended
domain of Ikaros has some overlap with the domain considered here, the focus on brain modeling is a
limitation for our purposes, and some of the features (the web-based interface) are beyond our needs.
Further, Ikaros is in a development phase which could lead to problems with unstable programming
interfaces and possibly incomplete, untested or missing functionality. Nevertheless, the approach taken
by Ikaros in relation to the goals of DTPF should be investigated further in the design stages of this
project.

OpenHRP is a simulator and motion control library for humanoid robotics. This system focuses on
the problems involved in implementing robotic control software. Included in the system is a robot
simulator to allow development and evaluation of the control software before it is used with a physical
robot. At this point in time OpenHRP appears to have been applied to work on a specific robot so it is
unclear how well the success reported will generalize to other robots. This focus on robotic control
could be useful as we become more involved with robotic hardware. For the modeling purposes
considered here this focus may actually be constraining and introduce unneeded complexity. Support
for OSX is also an issue. While OpenHRP appears unsuitable for direct use in the core of DTPF, this
does not necessarily preclude the use of OpenHRP for future projects concerned more with robotics
and where platform constraints aren’t such an issue.

The Adaptive Communication Environment (ACE) "is a freely available, open-source
object-oriented (OO) framework that implements many core patterns for concurrent communication
software. ACE provides a rich set of reusable C++ wrapper facades and framework components that
perform common communication software tasks across a range of OS platforms. The communication
software tasks provided by ACE include event demultiplexing and event handler dispatching, signal
handling, service initialization, interprocess communication, shared memory management, message
routing, dynamic (re)configuration of distributed services, concurrent execution and synchronization."
(ACE Overview).

"ACE is targeted for developers of high-performance and real-time communication services and
applications. It simplifies the development of OO network applications and services that utilize
interprocess communication, event demultiplexing, explicit dynamic linking, and concurrency. In
addition, ACE automates system configuration and reconfiguration by dynamically linking services
into applications at run-time and executing these services in one or more processes or threads." (ACE
Overview).

Another possibly attractive feature of ACE is The ACE ORB (TAO) which is an RT CORBA
implementation tuned for soft real-time tasks (Nagel, 2004). Direct use of such a CORBA
implementation may not be suitable for the various stakeholders involved here. Knowledge of CORBA
programming is not to be expected of model programmers or project developers. There are also some
configuration issues involved that may be an inappropriate burden on end-users of models.

Yet Another Robot Platform (YARP) is a framework intended for developing software for modular
distributed real-time robot systems. YARP uses and extends ACE to provide object-oriented
abstractions over system services such as multi-threading, distributed processing, flexible message
based IPC, wrappers over some hardware devices, and some mathematical and image processing
algorithms. The modular, port-based messaging is particularly interesting. Ports are created in read or
write modes, with a name to allow identification. Once connected a writer port can be used to send
arbitrary data to reader ports using multiple transport mechanisms. A shared memory based scheme is
used for communication within local computers and various network protocols are available for
communication across computers.

MUSCLE "is a robust, somewhat scalable, cross-platform client-server solution for dynamic
distributed applications for BeOS and other operating systems. It’s distributed in source code form, and
includes a ready-to-compile server, utility classes, and example clients. Tested under BeOS and Linux,
but should compile and run under any POSIX compliant OS with a C++ compiler." (MUSCLE Home

40of 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

Page). While MUSCLE provides yet another set of distributed programming functionality, the interest
for DTPF lies in its utility and messaging functionality. Specifically MUSCLE provides a generic
message class which functions as a container for name/value pairs of data. Objects of this message
class can be ’flattened’ (’serialized’ in Java parlance) to an array of bytes suitable for transmission over
any number of IPC facilities (TCP/UDP sockets, SysV message queues, etc.). The flattening process
automatically handles endian related issues for built-in language data types.

Another advantage of ACE, YARP and MUSCLE is portability. YARP supports Linux, Windows
(NT, 2K, XP) and QNX OS platforms. In the DTPF project, the Mac OSX platform is an intended
target. While ACE supports OSX, YARP does not have full support for OSX at this time and may not
be appropriate for direct use in DTPF. Developing on Linux using YARP and porting YARP/DTPF to
OSX later is possible, but this is likely to be more work than developing DTPF directly on OSX using
ACE. The major concern in moving DTPF/YARP to OSX would be endian issues. Pointer and other
type size differences should not be an issue if reasonable coding practices are followed (i.e., never cast
a pointer to an integer, never make assumptions about the size of ’I ong’, etc.).

1. System Environment

The first phase of DTPF shall run on single desktop/laptop computers with necessary support
software installed.

V. Functional Requirementsfor the Core Framework

S5of 13

The requirements presented here are quite dependent on the architectural model (an architectural
model gives a top-level view of the organization of a system, see Figure 1), and in some cases even
imply specific implementation. While this would be inappropriate for some systems, specifying
requirements of a framework require some reference to architectural structure. Avoiding this would
make clear specification of requirements much more difficult. In short, for a framework we feel it is
valid to require a certain architectural model.

Roster Plug-in Loader
Shared Plug-in Plug-in
II " Node Node)
Data Transport
Seryice - Connections
F{equestafﬂesponses‘m \‘ |
¢ | ¥
Client ‘ Node ‘—e+ Node ‘ —+Nada ‘ ‘ Node ‘

Application | | gjient Application Client Application

Figure 1: A top-level view of the DTPF architectural model. Note that the connections
shown between nodes are illustrative of a hypothetical situation. In general any node
can be connected to any other.

The architectural model adopted is roughly that of the BeOS MediaKit. Processing is organized into
nodes which can be connected together to send processing data from one to another. Processing data is
stored in buffers and this data is transfered by sending references to buffers from a producer node to a
consumer node. A roster maintains records of various resources, and controls certain shared resources.
A client interface allows program code (node implementations or client applications for example) to

06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

communicate with the roster through service requests. A plug-in loader is responsible for loading
plug-in nodes that can be specified dynamically at run-time.

Many of the concepts presented here are related in one way or another. As a result of this the current
document contains some redundancy between sections (particularly section IV.G discussing the roster).
This will be resolved as this document progresses.

IV.A: Data processing is divided into nodes with interfaces for configuration, control and data I/O.

1. Nodes are implemented as subclasses of a framework class, and may be statically linked
in application code or dynamically linked from shared libraries.

2. To make a node available to the framework it is registered with the roster using a
framework provided method. This involves communicating information to the roster that
is needed to identify and communicate with the node. (See § IV.G)

3. To make a registered node unavailable to the framework it is unregistered using a
framework provided method.

4. A registered node can be in stopped, starting, started and stopping states. A node is
transitioned into the starting and stopping states by slot methods that are called by the
framework. When these slot methods complete the node is considered to have
transitioned to its next state.

registered unregistered

Stopped o
Stopping

Stop
request

start
request

Figure 2: Registered node states.

o In the stopped state a node may be requested to perform all query and
configuration operations it supports.

o In the started state a node is assumed to be actively processing. Query and
configuration operations may fail at the discretion of the node implementation.

o The starting and stopping states are transitional, the framework prevents query or
configuration operations from being performed when a node is in either of these
states.

5. Methods are provided to query and update a node’s configuration parameters. (See §
IV.F)

6. Methods are provided for a node to publish its data input and output capabilities. These
capabilities are represented by outputs and inputs. A node informs the roster of changes
to its published inputs or outputs.

7. A protocol is provided for connecting nodes which produce output data to nodes which
accept input data. A connection establishes an agreement that an output node will
produce data, and that an input node will consume that data. (See § IV.C)

IV.B: Node execution is event driven.

1. Nodes are controlled by events corresponding to the various actions that can be
performed on a node.

2. A framework provided event looper is responsible for receiving and dispatching events
by calling framework defined hook and slot methods.

6 0of 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

IV.C: For communication of processing data (audio samples, video frames, etc.), a node which
outputs data can be connected to a node which accepts data input.

1.
2.
3. Once the input, output and desired format have been determined the client makes a

To establish a connection an input and an output for a desired data format type must be
identified. (See § IV.A & IV.E)
Client code specifies details of the desired data format.

request to establish the connection. (See § IV.I) If either of the nodes involved is not in
the stopped state an error condition is raised, terminating the connection process.
Format information and output identification is sent to the output (producer) node. The
output node can specify preferred values for unpecified format attribute values. At this
point the output node can terminate the connection process for any implementation
dependent reason by raising an error condition.

. If the output node did not terminate the connection process, format information from the

output node and input identification is sent to the input (consumer) node. The input node
can inspect the format configured by the output node. At this point the input node can
terminate the connection process for any implementation dependent reason by raising an
error condition.

Provided neither node raises an error condition the connection process is considered
complete after the input node has been consulted. Both nodes should be ready to
participate in their respective roles as producer and consumer.

A connection must be associated with a buffer group before the nodes involved can be
successfully started.

. Two connected nodes can be disconnected provided both nodes are in the stopped state.

IV.D: Data passed between nodes is stored in buffers, organized into buffer groups.

1.

The framework provides operations for buffer group allocation, deallocation, lookup of
existing buffer groups, and allocation/deallocation of buffer and buffer group descriptor
objects.

. Program code can request constraints on the memory addressing and alignment used for

buffer data when a buffer group is created. These constraints include absolute
addressing, aligned addressing (i.e., buffer data starting on a page boundary), and
non-paged buffer data.

. Each connection between nodes is associated with a buffer group that is used for the data

passed over the connection.

. A buffer group can be associated with more than one connection between nodes provided

all connections involve the same data format.

. A buffer group has an associated data format (See § IV.E) that is common to all buffers

in the buffer group. This format is the same as the format of any connections the buffer
group is associated with.

. Access rights to a buffer are acquired from the owning buffer group through the

framework before use. These rights are transferred from producer to consumer node
when a buffer is sent over a connection, and are released when the buffer is no longer
needed. This is needed to ensure process and thread synchronization. Exclusive
modification rights are a convention to be adhered to by node implementations to ensure
data integrity.

. A buffer is sent to a consumer node using a framework provided method resulting in the

consumer node being informed that the specific buffer is available.

IV.E: Data format descriptions are handled by the framework in a manner independent of specific
format implementations.

1.

7 of 13

Specific format types have a unique name in *supertype/subtype’ format (e.g.
‘audio/raw’, *video/packed’, 'raw’, etc.). Project level organization (i.e.
’esma/audio-features’) of formats is also possible.

06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

8of 13

2. Nodes and other program code that refer to specific formats and format attributes link

4.

against an appropriate implementation of the format. The implementation may be
contained in object code statically linked to an application or in a shared library.

. Before being used by a node implementation or client program code, formats are

registered with the roster using the format name and a format class supplied description.
This allows custom formats to be specified by a node implementation or client program
code.

Each unique registered format is assigned an identifier by the roster server. The identifier
and name are associated.

5. The framework provides default formats for *audio/sampled’, ’video/packed’,

’video/planar’ and ’raw’ types. Wildcard or don’t care’ values are provided for the
specific format attributes where applicable.

Format name Description | Attributes

"audio/sampled’ |Describes sampled audio data Sampling rate, samples per buffer,
sample data type, quantization type
(linear, p-law, etc.), channel count
and sample layout.

"video/packed’ |Describes video data organized |Colorspace, image dimensions,
into arrays of pixels containing | pixels per image row, storage size
all color components. per image row and video frame
rate.

’video/planar’ |Describes video data organized | Colorspace, image dimensions,
into contiguous "planes’ of data |pixels per plane row per plane,
values with one plane for each |storage size per plane row per

color component. plane, and video frame rate.
‘raw’ Describes data of primitive type. |Data type (i nt 8, ui nt 32, real 32,
etc.) and the number of elements
per buffer.
All formats All data formats Frame rate (buffers per unit time)
of the data.

IV.F: Nodes can publish a list of parameters, where each parameter is described by a parameter
model, organized into parameter groups. This allows uniform configuration by other program
code, and saving and restoration of configurations.

1.
2.
3.

Parameter groups can contain any number of parameter models and other parameter
groups. A there is one root parameter group for a node.

Parameter models include a parameter name, value, textual label, and preferred user
interface (UI) controller type to allow automatic construction of configuration UI’s.
Types of parameter models include on/off, finite set, mutually-exclusive group,
bounded-range, file/directory, and single/multi-line text. The following table gives
general descriptions of these models and GUI components typically associates with
them. The GUI components are listed here to help illustrate future uses of these models.

Parameter Model Description/Purpose Typical GUI
Type Components
On/off Yes or no parameter values. Checkboxes.
Finite set List of choices allowing multiple Lists, multiple selection
selection. combo boxes.
Mutually-exclusive |List of choices allowing only one Radio buttons, single
group selection. selection combo boxes.
Bounded range Parameter values lying between two | Sliders, scrollbars.
values, inclusive.

06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

File/directory Parameters that refer to file system |File selection dialogs.
entries.
Text Single or multiple line text for Text input fields, textual

comments or display of information. |labels.

4. Parameter models indicate whether a parameter can be modified during processing
(corresponding to a node in the started state), during setup only (corresponding to a node
in the stopped state), or not at all (provided for informational purposes).

5. Parameter models are configured to trigger an automatic parameter update upon
modification, or to wait for program code to directly invoke an update. This
configuration can be applied to parameter groups, affecting all parameter models and
parameter groups contained within.

6. Changes to a node’s parameter values are propagated to the node by the framework. A
node notifies the framework of changes the node makes to its own parameter values.

IV.G: A roster manages framework resources, and acts as broker for framework services. [ToDo:
Should define the broker design pattern.]

1. A list of dormant nodesis maintained.

2. A list of active nodes that are currently registered with the roster is maintained. Each
registered active node is assigned a unique identifier by the roster. For each node lists of
published inputs and outputs are maintained by the roster.

3. A list of active connections between nodes is maintained. The connection information
identifies the sending and receiving nodes, and the data format used.

4. A list of buffer groups is maintained. Each buffer group is assigned a unique identifier.
The roster tracks which connection(s) a buffer group is associated with.

5. A list of unique data formats registered with the roster is maintained. Each registered
format is assigned a unique identifier by the roster.

IV.H: A plug-in loader handles loading of dormant plug-in nodes.

1. The plugin-loader handles requests to load a dormant node or to unload a previously
loaded node.

2. Multiple instances of the same plug-in node can be loaded, except where that is
inappropriate for a node (e.g., a node requiring exclusive access to a hardware device).
Node implementations enforce this constraint.

IV.I: DTPF provides a client interface to the roster. The following operations are provided:

1. Requesting a list of a node’s inputs and outputs that are not yet connected, currently
connected inputs and outputs, or all outputs and inputs. These operations can be
constrained to inputs and outputs of a specified format type.

2. Establishing a new connection between an output and an input.

3. Breaking [ToDo: ’breaking’ sounds bad, investigate alternative terminology...] a
previously established connection.

4. Registering a node with the roster.

5. Unregistering a node.

6. Requesting a list of nodes that have been registered with the roster. This can be
constrained to nodes that support specified input and output format types.

7. Requesting a list of dormant plug-in nodes that can be loaded by the plug-in loader. This
can be limited to nodes that support specified input and output format types.

8. Loading an instance of a dormant plug-in node.

9. Releasing a plug-in node to allow the framework to deallocate the node.

10. Requesting an active node’s top-level parameter group.
11. Applying changes to a node’s parameters.
12. Registering a format with the roster.

9of 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

13. Unregistering a format.
14. Requesting a list of formats that have been registered with the roster.
15. Prerolling, starting and stopping an active node.
16. Registering a listener to receive notification when:
. A node is registered or unregistered.
2. A new connection is established or an existing connection is broken.
3. Changes are made to a node’s parameters.
4. A format is registered or unregistered.
5. A node transitions to the prerolling, prerolled, starting, started, stopping or stopped
states.
Listeners can be registered to receive all notifications or a subset of notifications. The
notifications delivered to a listener can also be limited to particular nodes.
17. Unregistering a listener so it no longer receives notifications.

—

IV.J: A driver program allows integration testing of the framework roster interface and a means to
setup initial "'models’.

V. Non-functional Reguirements

10 of 13

V.A: To facilitate use and reuse for diverse models, by diverse users, the framework design and code
is "well documented’ for the programmer and user.

1. The project development documentation will be maintained throughout the project. These
documents include a project plan, project requirements (this document), design
documents and diagrams, and test procedures and plans. [ToDo: Specify structure/content
of these documents, link/refs to common formats, recommendations. |

2. User documentation includes instructions on installing DTPF and needed support
software, enumeration of supported and tested platforms and software configurations, and
instructions detailing operation of framework applications.

3. For model and application programmers the application programming interface (API) is
thoroughly and consistently documented. This documentation includes the intent and
proper use of classes, methods and members, and descriptions of method pre-conditions,
arguments, return values and post-conditions. General discussion of important concepts,
possible difficulties/problems and shortcomings of the software are also included. Design
and other diagrams are to be included as appropriate.

4. Documentation for project developers similar in detail to the API documentation is
provided. This documentation covers the internals of the framework implementation.

5. A source-level documentation system (such as Doxygen, see also: Williams, 2004) is
used to generate programming interface documentation.

V.B: The implementation language is ISO standardized C++. [ToDo: Make sure this is correct way to
refer to ’standard’ C++, link/ref]

V.C: DTPF is released as open-source software under the Academic Free License. version 2.1 (AFL).

1. All core framework libraries and applications are compatible with the AFL license.

2. All software which the core framework depends upon is compatible with this license.
ACE, YARP and MUSCLE satisfy this requirement.

3. Tools used are not limited to platform. This includes tools used for planning,
documentation, development and other tasks. Commercial or proprietary products are
avoided where possible.

4. Client applications and node implementations that are not part of the core framework, and
are distributed separately from the framework, are not directly constrained by this license.

5. DTPF is a SourceForge project. SourceForge’s services are used for version control,
website hosting, file releases and applicable aspects of project management.

06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

V.D: Platform details.

1. The first phase of DTPF is implemented on Mac OSX.

2. Linux is a secondary platform for this phase of DTPF. Primary development is focused on
OSX. [ToDo: Need to explain this better: want to have some support for Linux in the
future, but for this phase there shouldn’t be a concern to validate builds on Linux...]

3. Platform neutral coding practices are followed (i.e., a pointer is never cast to an integer,
no assumptions are made about the size of 'l ong’, no assumptions are made regarding
byte ordering, etc.).

4. For the first phase of implementation processing is not real-time. Any computer capable
of running OSX is capable of running the framework. The nodes themselves are the major
resources sinks and their requirements will impose stricter limitations.

V.E: Allowances are made for future soft real-time processing and multiple machine distribution.

V.F: The core framework consumes minimal resources.

1. When not involved in handling requests for services the roster, plug-in loader, roster
client and event loopers consume no more than 1% of processor time on a 500 MHz
Macintosh G4 system. Ideally this will be 0% usage.

2. The roster resources use no more than 1 KB of memory per entry. Each registered node,
dormant plug-in node, input, output, format, connection, buffer group description, etc. is
considered a resource here. Buffer groups themselves involve at least as much memory
for the buffers they contain.

V.G:

V1. References

Academic Free License:

= Open Source Initiative Page: http://opensource.org/licenses/afl-2.1.php

ACE:

= Home Page: http://www.cs.wustl.edu/~schmidt/ACE.html

» ACE Overview: http://www.cs.wustl.edu/~schmidt/ACE-overview.html

= Nagel, W. (2004). Real-Time Systems & RT CORBA. Dr. Dobb’s Journal, December 2004 (pp.
70-75). CMP Media LLC, San Francisco.

BeOS MediaKit:

» MediaKit Developer Documentation:
http://datatime.sourceforge.net/Be %20Book/The%20Media%20Kit/index.html
= The Be Book, General BeOS Developer Documentation:
http://datatime.sourceforge.net/Be %20Book/index.html
= Cortex Home Page: http://cortex.sourceforge.net

DataTime O:

= Archived Source Download:

110f 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

http://prdownloads.sourceforge.net/datatime/DataTime(.tgz?download

Doxygen:

= Home Page: http://www.doxygen.org
» Williams, A. (2004). Examining Doxygen. Dr. Dobb’s Journal, October 2004 (pp. 52-56). CMP
Media LLC, San Francisco.
IKAROS:

= Home Page: http://asip.lucs.lu.se/I[IKAROS

JMEF:

» JMF API Home Page: http://java.sun.com/products/java-media/jmf
» Wellings, A.J. (2004). Concurrent and Real-time Programming in Java. John Wiley, Hoboken,
NJ.

MUSCLE:

= Home Page: http://www.lcscanada.com/muscle

Mutual Information Algorithm:

= Hershey, J., & Movellan, J. (2000). Audio-vision: Using audio-visual synchrony to locate
sounds. In S. A. Solla, T. K. Leen, & K. R. Muller (eds.), Advances in Neural Information
Processing Systems 12 (pp. 813-819). Cambridge, MA: MIT Press.

OpenHRP:
» Kanehiro, F., Hirukawa, H., & Kajita, S. (2004). OpenHRP: Open Architecture Humanoid

Robotics. International Journal of Robotics Research, 23, 155-165. Internet:
http://dx.doi.org/10.1177/0278364904041324

SenseStream:

= Home Page: http://www.cprince.com/PubRes/SenseStream

= Prince, C. G. & Hollich, G. J. (in press). Synching infants with models: A perceptual-level model
of infant synchrony detection. The Journal of Cognitive Systems Research, Special Issue on
Epigenetic Robotics. Internet: http://dx.doi.org/10.1016/j.cogsys.2004.11.006

= Prince, C. G., Hollich, G. J., Helder, N. A., Mislivec, E. J., Reddy, A., Salunke, S., & Memon, N.
(2004). Taking synchrony seriously: A perceptual-level model of infant synchrony detection.
Paper presented at The Fourth International Workshop on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems, held at Genoa, Italy, August 25-27, 2004. (pp.
89-96). http://www.lucs.lu.se/ftp/pub/LUCS Studies/LUCS117/prince.pdf

SoDiBot:

= Home Page: http://www.cprince.com/PubRes/SoDiBot04

SoundStream:
12 of 13 06/14/2005 01:05 PM

DTPF: DataTime Processing Framework - Project Requirements http://datatime.sourceforge.net/DevDoc/Requirements/Require...

» Home Page: http://www.cprince.com/projects/KidCause/SoundStream

SourceForge:

= Home Page: http://www.sourceforge.net
» DTPF Project Page: https://sourceforge.net/projects/datatime

YARP:

= Home Page: http://yarp0.sourceforge.net
= YARP Installation Guide:
http://yarp0.sourceforge.net/doc-yarp0/doc/manual/manual/manual.html

VI1I. Glossary

hook method
Polymorphic method defining an interface for which subclasses may optionally provide an
implementation.

plug-in
A software component that can be dynamically loaded at run-time.

slot method
Polymorphic method defining an interface that must be implemented by subclasses.

Hosted on
sOUrRCER. RGE™
shet

© 2005 Eric J. Mislivec, Last Modified: 13 June, 2005

13 of 13 06/14/2005 01:05 PM

