
C. G. Prince 
6 June 2005 (revised: 6/8/05; 6/10/05; 6/13/05; 6/14/05; 6/22/05; 6/24/05).

DTPF Use Scenarios: SenseStream, ESMA, and SoDiBot 

1. Introduction 

We have now specified the requirements for the DataTime Processing Framework (DTPF; 
). As an initial step in evaluating those requirements, before we start designing the DTPF, we will outline 

use scenarios for DTPF.The primary use scenario is for the SenseStream application. In this document, we create a design for the 
SenseStream program ( ) in terms of the DTPF. We are designing the DTPF with the goals of 
flexibility of reuse of components, and modularization. In short, the framework as planned should enable us to create a version of 
SenseStream that is more easily modified and re-used than the previous (non-DTPF) version of SenseStream. Our goals in this Virtual 
SenseStream are to (a) layout a design for SenseStream in terms of DTPF, (b) to layout a series of hypothetical changes to SenseStream 
typical of those that have already been applied to SenseStream and, (c) attempt to evaluate if those changes to SenseStream would now be 
easier with it implemented in terms of DTPF. We also briefly present a Node architecture for the current ESMA (Epigenetic Sensory Model 
of Attention) model.

http://datatime.sourceforge.net/DevDoc/
Requirements/Requirements.html 

http://www.cprince.com/PubRes/SenseStream 

2. Description of Current Design of SenseStream

In order to design SenseStream in terms of DTPF, we need a description of its current design. The thread and communication organization of 
the program is given in this diagram:

  

Each data channel (  type) is structured as a circular queue of fixed-length buffers. Each buffer is referred to by a frame 
number. Data messages are sent between processes that contain references to these buffers (i.e., frame numbers) within particular channels. 
The formats of the buffers referred to in these data messages, and sent between threads, are given by the following table:

BufferChannel

6/24/05 9:20 AMDTPF Use Scenarios

Page 1 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



Data channel Format of Buffer 

Audio channel

Audio buffers have variable contents depending on what audio processing options have 
been selected using the SenseStream GUI. Audio processing options presently are: RMS, 
ZCR, Centroid, Rolloff, MFCC, and FFT (FFT is implicit in Centroid, Rolloff, and 
MFCC). For example, if RMS and ZCR processing are requested, then each audio buffer 
sent from the Audio Input Process to the Correlate Process using the audio channel will 
contain RMS and ZCR data. The Correlate Process is not knowledable about the specifics 
of the content of the buffers sent to it via the audio channel. Rather, it knows the length of 
the data, i.e., the number of audio features (n). The format of the audio features is floating 
point.

 What if there were two audio channels-- one for features represented as 
floating point, the other for features represented as integers? When the system starts, 
dependent on the features being used during that run, one or both of the audio channels 
could be utilized. 

Design note:

Video channel 

The video channel contains processed visual features, as visual frames. Each visual feature 
is in floating point format. The particular visual feature that is used is selected via the 
SenseStream GUI. Visual features can be: PIC (Pixel Intensity Change), Y from YUV 
(grayscale), YUV, or RGB. The downstream process (i.e., the Correlate Process) knows 
that the visual features are represented as visual frames. The total length of the set of visual 
features (m) is used to determine the component size in these visual frames in the 
downstream process (i.e., the Correlate Process). 

As with the audio channel, what if there were two visual channels-- one for 
features represented as floating point, the other for features represented as integers? When 
the system starts, dependent on the features being used during that run, one or both of the 
video channels could be utilized.

Design note: 

Image channel 

The first block of data in each of these buffers is the RGB format of the image, stored as a 
visual frame. The second block of data is the YUV format of the image, also stored as a 
visual frame. The downstream process 

 It would appear to be a better structure to use two separate image channels-- 
one for RGB, the other for YUV.
Design note:

Mixel channel

This channel contains buffers that are the mixelgrams. I.e., these are visual frames, with 
each component being a mixel, computed via the Hershey & Movellan (2000) algorithm. 
The format of the components are floating point values. 

The Segment Process also uses these buffers. A chunk of data immediately past the 
mixelgram in these buffers is used to store a thresholded version of the mixelgram, and a 
chunk of data past this thresholded version is used to store a smoothed version. 

Segment channel These buffers contain both a MutualInfoData data structure , and segmentation data (a 
vector of floating point values). 

Prior to the Correlate process, a particular frame number refers to buffers arising from the same temporal part each of the 
audio, video, and image channels. E.g., frame 20 refers to the visual frame, audio frame, arising at the same time (i.e., that are read 
correspondingly from the MPEG video file). Subsequent to the Correlate process (i.e., downstream of this process), each frame number refers 
to a mixelgram or other processed data (with the exception of the image channel, which maintains the frame number relation to the original 
data). The first -1 frames output by the Correlator over the mixel channel will be all be filled with zeros, but on frame  and after, the frames 
represent mixelgrams of the current  buffers of audio and visual data. The segment channel is a processed version of the mixel channel, with 
the same frame numbers. 

Synchronization: 

S S
S

While SenseStream is running, control messages are sent to the Audio and Video Input Processes, telling them to get the next frame. Once 
the Audio and Video Input Processes have read from the MPEG file, these processes send messages to the Correlate Process telling it there 
are audio and video frames available. After the Correlate Process does its work, it sends a message to the Segment Process telling it there is a 
frame available. Similarly, the Segment Process, after it does its work, sends a message to the Display Process telling it there is a frame 
available. When the Display Process has completed its task on the frame, it calls a function on Stream Control to start the process again (i.e., 
a message to the Audio and Video Input Processes). 

A description of the threads is given here:

6/24/05 9:20 AMDTPF Use Scenarios

Page 2 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



Thread Responsibility

Process Manager 
Creates other system threads (audio, video, correlate, segment, display), checks input files 
for validity, sets up buffer channels, calls setup methods on all of the threads, starts other 
system threads, stops processing. 

Audio Input 
Process Reads from MPEG video file; analyzes for audio features. 

Video Input 
Process Reads from MPEG video file; analyzes for visual features. 

Correlator Process Performs the Hershey & Movellan (2000) algorithm processing on the input audio and 
visual features, generating mixelgram output frames. Accepts changes in  parameter.S

Display Process 
Prepares images for display, does processing needed for changing display configuration 
(e.g., mask type), and carries out  on mixelgrams (as a measure of the 
quantity of synchrony present in the mixelgram).

edge detection

Segment Process 

Segment Process mixels, and mixels. Computes the , and 
performs segmentation.

thresholds smooths centroid

Presently the Segment Process always thresholds the mixels, and smooths the 
mixels. It also always computes the centroid, and performs segmentation. However, the 
results of these operations are not always utilized. Presumably, this must reduce present 
run-time efficiency. 

Design note: 

3. Changes to SenseStream

We have applied various changes to SenseStream that might have been made easier if SenseStream was designed within the 
DTPF. These changes include:

Change Old SenseStream New (Planned) SenseStream 

(A) Adding in the 
MFCC audio feature 

1. Changes to the Audio Input Process 
(AudioInputProcess.cpp) to compute 
MFCC's.

2. Changes to the GUI 
(AudioSetupPanel.cpp) to enable the user 
to select the MFCC option.

3. Changes to the Process Manager 
(ProcessManager.cpp) to add the MFCC's 
into the computation of the "n" parameter.

4. Changes to ProcessDefs.h-- change in 
enum for audio features. 

Only an Audio Node should need to be changed. It 
will have a set of parameters. These parameters will 
be automatically presented to the user via the GUI. 
These parameters can be extended, as part of this 
change, to allow for the user selecting the MFCC 
option. The value of "n" will be computed by the 
Audio Node as a function of the parameters. 

Optionally, an MFCC Node could be added 
downstream of the Audio Node. This new Node 
would have its own parameters (reflected on the 
GUI), and the value of "n" would have to be altered 
to reflect the use of the MFCC node, as would the 
data being passed on to the Correlate Process. 

(B) Adding in the PIC 
visual feature 

1. Changes to the Video Input Process 
(VideoInputProcess.cpp) to compute PIC.

2. Change to the GUI 
(VideoSetupPanel.cpp) to enable the user 
to select the PIC option. 

3. Changes to the Process Manager 
(ProcessManager.cpp) to add the PIC's 
into the computation of the "m" 
parameter. 

4. Change to ProcessDefs.h-- change in 
enum for visual features. 

This change is similar to adding the MFCC audio 
feature, except it is in the visual processing stream. 

1. Change to Correlator.cpp to alter the 
mixel computation to using audio 
attenuation. 

2. Change to CorrelateProcess.cpp -- to 

6/24/05 9:20 AMDTPF Use Scenarios

Page 3 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



(C) Adding in Audio 
Attenuation

have the Correlator constructor now use 
the audio attenuation, and the alpha value, 
and to have the setup method use these 
too.

3. Change to the Process Manger to have 
it use the modified CorrelateProcess.cpp 
setup method. 

4. Change to ProcessDefs.h-- add in field 
names for audio attenuation, and alpha. 

5. Change to the CorrelateSetupPanel.cpp 
to add in audio attenuation and alpha. 

Add a Node, downstream of the Correlator, with an 
input also from the Audio Nodes for RMS audio. 

(D) Adding in edge 
detection for 
quantifying 
mixelgrams 

1. Changes to DisplayProcess.cpp to 
compute edge detection (Gaussian & 
Sobel filters on the basis of the 
mixelgrams) when required by GUI, and 
to code in the actual image filtering 
(PrepareFilteredImage).

2. Change to the GUI to enable the edge 
detection to be turned on. Changes made 
to: DisplayDefs.h, ImageDisplayBox.cpp

Add a Node between the Correlator and the Display 
to do filtering. 

(E) Connected region 
statistics, NND stats 

1. Change to the GUI 
(CorrelateSetupPanel.cpp) to add in these 
as options. 

2. Changes to SegmentProcess.cpp to 
compute these statistics. 

3. Change to ProcessDefs.h 

Similar to edge detection. 

(F) Total left/right 
luminance or PIC

1. Changes to VideoInputProcess.cpp (No 
changes made to GUI-- these changes 
were put in as conditional compilation.)

Probably best to implement as a new Node, 
downstream of the Video Node. Perhaps as a 
separate network of Nodes (a new "model") because 
this is separate from synchrony detection. 

(G) Saving data to 
files for FaceSynch 
testing 

1. Changes put into CorrelateProcess.cpp. 
(No changes made to GUI-- these changes 
were put in as conditional compilation.)

Implement as nodes downstream of the Video 
Nodes and Audio Nodes. The frames of audio and 
video data can be written on the basis of the frame 
numbers, which give access to the same temporal 
part of the video file. 

(H) Output 
mixelgrams as a video 
file. 

(Not implemented in SenseStream 
currently)

Implement a new Video File Writer Node, taking 
audio and visual channels as input.

(I) Only process 
rectangular 
subregions of the 
visual input or ignore 
rectangular 
subregions specified 
as a list of rectangular 
regions ((x1, y1), (x2, 
y2)).

(Not implemented in SenseStream 
currently)

If we put a constraint on processing only one 
rectangular subregion, then this becomes markedly 
simplified. This becomes a filter subsequent to the 
Video Input Node. This filter extracts out the 
rectangular subregion that will be processed, and 
passes that along dowstream. To process multiple 
rectangular subregions, this method could be applied 
separately, in serial (as opposed to in parallel) to 
each of the subregions. 

(J) Display a GUI 
representation of the 
audio waveform 
being processed 

(Not implemented in SenseStream 
currently)

Implement a new Audio Display Node that takes 
audio input from one or more of the Audio Stream 
Nodes and graphically displays that data over time. 

4. Re-Design of SenseStream in Terms of DTPF.

Given the above changes to SenseStream, and the DTPF, we plan to implement the overall SenseStream in the following manner.

6/24/05 9:20 AMDTPF Use Scenarios

Page 4 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



Terminology:

6/24/05 9:20 AMDTPF Use Scenarios

Page 5 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



Configuration parameters

Refers to parameters obtained from the end-user through the GUI.

Connections

Input/output interfaces for Nodes to other Nodes. Connections between nodes have particular data 
types. These data types specify the format of the data that this Node sends or expects to receive over a 
particular connection. These data types are used when configuring Nodes in order to determine which 
Node can be connected to which other nodes. The connection data types for a node can be obtained by 
querying that Node.

A description of the Nodes in the DTPF of SenseStream is given here:

Node or Node Group Responsibility

Video File Reader 
Node 

: Name of the video file to be processedConfiguration parameters

: Checks the video file to determine if it is of the correct format (e.g., does it have both audio and visual 
channels). Reads from audio & visual tracks of video file (e.g., using Mac OS Video API). : Each 
downstream connected node receives buffers containing audio data frames-- these are arrays of raw audio, 
containing data sampled at the same time as a visual frame. Buffer numbers sent from this Node correspond to 
visual frame numbers. : Each downstream connected node receives buffers containing visual data frames-
- these are arrays of visual data, in the format as given by the configuration parameter, corresponding to a visual 
frame. Buffer numbers sent from this Node correspond to visual frame numbers. 

Processing
For audio

For visual

: An audio channel to the audio stream, and a visual channel to the visual stream. Connections
Audio Stream : None.Configuration parameters

Audio Broadcast Node 

: None.Configuration parameters

: Copy input to broadcast output channel. Processing

: : channel containing the raw audio data. : Broadcast buffer channel. Connections Input Output

RMS Filter Node 

: None.Configuration parameters

: Analyzes raw audio for RMS (root-mean sequared) audio features.Processing

: : Buffers containing frames of audio data. : Buffers containing audio features processed 
from the input audio frames. The frame number correspondence to the visual frames is maintained. That is, for each 
audio frame obtained on the input, a single filtered audio frame is sent to the output. 

Connections Input Output

Audio Feature 
Aggregation Node 

: None. Configuration parameters

: Accepts buffers containing audio features. Aggregates them into a single output buffer, and sends them 
downstream, along with a number indicating the number of scalar elements in the resulting output buffer. 
Processing

: : Buffers containing audio features. : Buffers containing aggregated audio features. Connections Input Output

Visual Stream scale at which to process visual frames, and the visual features which are to be used 
(e.g., grayscale, or RGB visual features). 
Configuration parameters: 

Visual Broadcast Node 

: None.Configuration parameters

: Copy input to broadcast output channel. Processing

: : channel containing the raw visual data. : Broadcast buffer channel. Connections Input Output

Grayscale filter Node 

: None.Configuration parameters

: Analyzes RGB visual for grayscale (intensity) feature.Processing

: : Buffers containing frames of visual data. : Buffers containing grayscale features 
processed from the input visual frames.
Connections Input Output

: None. Configuration parameters

6/24/05 9:20 AMDTPF Use Scenarios

Page 6 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



Visual Feature 
Aggregation Node 

: Accepts buffers containing visual features. Aggregates them into a single output buffer, and sends them 
downstream, along with a number indicating the number of scalar elements per pixel in the resulting output buffer. 
Processing

: : Buffers containing visual features, on a frame basis. : Buffers containing aggregated 
visual features, on a frame basis. 
Connections Input Output

Mixelgram stream : Flags indicating whether segmentation, thresholding & smoothing, and centroid 
computations are to be carried out. 
Configuration parameters

Mixelgram Node 

: S, the processing window size. Configuration parameters

: Performs the Hershey & Movellan (2000) algorithm processing on the input audio and visual features, 
generating mixelgram output frames. 
Processing

: : (1) Buffers containing aggregated audio features. (2) Buffers containing aggregated visual 
features. : Buffers containing mixelgrams.
Connections Input

Output

Segment Node 
: Optionally performs segmentation.Processing

: : (1) Buffers containing mixelgrams. (2) Buffers containing visual images. : Visual 
images segmented by color, on the basis of the mixelgrams. 
Connections Input Output

Threshold & Smooth 
Node 

: Optionally performs thresholding and smoothing. Processing

: : Mixelgram buffers, : Thresholded & Smoothed Mixelgram buffers. Connections Input Output

Centroid Node 
: Optionally computes the centroid of the current data frames. Processing

: : Buffers containing mixelgrams. : (x, y) coordinates of center of mass of mixelgrams. 
One coordinate pair per mixelgram. 
Connections Input Output

Display Node 

: Which of the input data are to be visually displayed-- i.e., which of the images, 
mixelgrams, smoothed & thresholded mixelgrams, centroid coordinates.
Configuration parameters

: Displays input data.Processing

: : Buffers containing (1) mixelgrams, (2) thresholded & smoothed mixelgrams, (3) centroid 
coordinates, and (4) images. 
Connections Input

5. Other Uses of DTPF

The following is an architecture we have proposed (but not yet implemented) for modeling word-object mapping in infants. Round cornered 
rectangles represent model processing components. Arrows represent data communication between model components. Circled numbers in 
the upper right of the rectangles indicate a plan for sequence of implementation. (There is no number "1" because the modeling framework 
itself is the first step towards such a model). 

6/24/05 9:20 AMDTPF Use Scenarios

Page 7 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



  

The following is an initial description of an architecture we have partly implemented for connecting the  robot to SenseStream for 
performing self-other discrimination. 

SoDiBot

6. Conclusion

6/24/05 9:20 AMDTPF Use Scenarios

Page 8 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html



In the above table of changes to the old SenseStream, and the changes as we plan them for the new SenseStream, the main impacts of 
changing to a DTPF SenseStream will be the following. First, changes should be isolated to smaller parts (e.g., fewer files) of the code by the 
use of configuration parameters. No longer should a change to the processing need to explicitly add parts to the GUI to obtain new 
parameters from the user. Parameters will be requested by the Nodes, and these requests will be automatically formed into a GUI interface. 
The parameter request code for the Node will be contained in the same file(s) as the processing code for the Node. Additionally, as part of 
the DTPF functionality, we will be enabling easy creation and introduction of new Nodes, along with its channel/data interface to other 
Nodes. It should be relatively easy to create a new node, and the communication structure to other Nodes should be straight forward. This 
should also facilitate the re-use of Nodes in other networks of nodes (e.g., other models). 

6/24/05 9:20 AMDTPF Use Scenarios

Page 9 of 9http://datatime.sourceforge.net/DevDoc/Requirements/UseScenarios.html


